The Finetuned Prison Experiment
The term “fine-tuned universe” refers to the idea that the conditions and fundamental constants of our universe are precisely set in a way that allows life, like us humans, to exist. It suggests that if any of these conditions were even slightly different, life as we know it would not be possible.
Imagine you’re baking cookies, and you need to get all the ingredients and measurements exactly right to make delicious cookies. Similarly, the fine-tuning of the universe means that everything in our universe, like the force of gravity or the strength of the fundamental particles, has to be just right for life to exist.
For example, if the force of gravity was much stronger, it would make everything collapse, and if it was much weaker, nothing would hold together. It’s like adjusting the heat on the oven for your cookies. If it’s too hot, they’ll burn, and if it’s too cold, they won’t cook.
Scientists find it fascinating that our universe seems to be tuned so precisely that life can thrive. It raises questions about how and why the universe ended up this way, and some people see it as evidence of a creator or a grand design.
To summarize, the idea of a fine-tuned universe says that the conditions necessary for life to exist are incredibly precise, just like getting all the ingredients and measurements right for baking cookies. If these conditions were even slightly different, life as we know it would not be possible.
In this thought experiment, we attempt to decide whether the “fine-tuned universe” argument is better explained by design (Simulation Creation) or ensemble conjectures (Randomly selected Multiverse variation)
Consider a scenario where a prisoner awakens in her cell, without any memory of how she got there. Her only connection to the external world is through a touchscreen, which allows her to communicate with an unknown entity.
This screen informs the prisoner that one of two possibilities is true: The first is that the prisoner is part of an experiment where millions of individuals were infected with a deadly virus. A cure, randomly chosen from millions of combinations, was administered to each individual, and it appears that the prisoner’s cure has worked. (Analogy of the Multiverse, Existence by Chance)
The second possibility is that her survival is not a matter of chance but design. She was selected because she is special; her survival was intentional. (Creation, Simulation, Existence by Selection)
Now, which of these two narratives should the prisoner believe? If she correctly identifies the truth, she is freed. If not, she faces imminent death. Assuming the information is truthful, what option should the prisoner rationally prefer?
The crux in this experiment is that we could argue that if the first possibility is true, the prisoner has obviously more freedom to decide between possibility 1 and 2. Since this prison obviously operates under randomness her chance to get the answer right is on first sight .5 for each option. But then it should be clear that she should not ever consider option two and vote for randomness since determinism is clearly false. In case two it is odd that she was a priori selected, so the Prison operates under deterministic algorithms, which means it is also already decided which of the 2 options she will choose. Which means under the assumptions that her free will to choose is an illusion she should “choose” option two. The more we think about it the more we notice the “hidden” complexity in the Thought experiment.
Should the prisoner feel lucky to be alive? Should the existence of an observer to perceive improbable events be considered? Perhaps the sensation of surprise isn’t determined by the odds of being an observer or the observability of events but by the subjective feeling of being fortunate.
The Palettes of Rational and Natural Universes
It’s unclear if the assumption that there is a fundamental difference between what observers can perceive inside a universe and the fact, they can perceive at all holds water. The universe in this case could be likened to a special kind of telescope, one that allows us to look inward rather than outward. But does this make it then a special telescope or simply a microscope?
In the context of fine-tuning, a clear analogy is needed to highlight any hidden contradictions within the argument, similar to self sabotaging constructs like the set of all sets that don’t contain themselves.
Consider a metaverse, comprising billions of universes, some with observers and some without. Given the necessity for fine-tuning of cosmological constants, for every fine-tuned universe, there are infinite others that are not and thus cannot be observed.
When a universe comes into existence, three properties, referred to as the “chromatic spectrum” of the universe, could be used to determine its potential to develop observers. Only if these three parameters land on natural numbers will the universe contain observers, which means they are landing on an RGB Value that is later on visible to Boltzmann Brains that pop in and out of Existence, to check if the universe is natural.
If any of these parameters result in a rational number that is not natural, the universe will not support observers. From this point, we can apply a diagonal argument to show that we are dealing with different types of infinities. We categorize universes that foster observers as “natural” and those that do not as “rational.”
Rather than questioning whether it’s surprising to find oneself in a natural universe we could ask: would we be surprised to find ourselves in a rational universe? This is of course self-contradictory. We couldn’t be surprised in a universe that doesn’t support surprisable Observer. By simple negation, we should always feel surprised when circumstances permit, regardless of our beliefs about design or multiverse theory. It seems challenging to maintain skepticism in this situation; feeling lucky appears to be the default response. (It seems somehow that this is a kind of reductio ad absurdum similar to Euclid’s proof that the root of 2 cannot be a fraction.)
The Surprise is a Lie
Observers are inherently predisposed to experience surprise; it’s their default state. Our sense of normality about existence is simply a result of acclimatization, a process that occurred during our early years when our brains were evolving their higher functions. We adapted to the fundamental reality of being alive. Yet, throughout the development of our consciousness, there’s never a moment when we can genuinely proclaim, “I anticipated being awake and am not at all surprised by it.”
One issue is that we haven’t defined what it means to observe. We would certainly agree that for an object to gain observer status, it must possess special properties. Some objects, which we can refer to as subjects, are capable of observation. Can certain objects be upgraded to subjects? Could we identify a set of observable properties that would allow us to measure an object’s potential for observation?
Surely, sensory input and reflection on the environment would contribute to subjectivity. There’s an argument to be made that human minds, being embodied, perceive with their entire body, not solely through their brain.
Observers on a spectrum
Does one lose their observer status when they sleep or are under anesthesia? Would a universe where all conscious beings were asleep be unobserved? If a universe collapses and no one is there to witness it, does it even occur?
That we never seem to grasp the moment that we switch from waking consciousness to sleep stage and vice versa seems to hint to the fact that neither the body nor the “mind” are solely responsible for these transitions.
The notion of subjects could be considered fundamental to the existence of objects. In other words, without subjects (observers), objects might not exist in any meaningful sense. Therefore, it could be nonsensical to consider sets of objects, or universes, which do not contain subjects, i.e., observerless universes.
The term “Observer” introduces intriguing but self-contained contradictions regarding the nature of consciousness. When applied to cosmology, it often leads to self-defying prophecies.
Introduction of consciousness-centered cosmology
In a consciousness-centered cosmology, the surprise factor should not be winning a lottery jackpot over any other ticket, but rather the capacity to play the lottery at all. The inherent randomness of the outcome doesn’t diminish the significance of participation. This is why the analogy might seem weak or misleading.
A universe introspecting through the consciousness of observers within it presents an undefined focus. Yet, these two scenarios may not be separate but interconnected. They might appear as a false dichotomy, existing on a continuum of thought where one notion leads seamlessly to the next.
The conundrum arises when we consider a universe where intentional random selection is possible. Randomness (Mutation) on the lower and Selection (Adaptation) on the higher Levels are also perfectly well working in Darwinian Evolution of Life and Memetic Evolution of Information, should we consider this kind of evolutionary process on the cosmic scale, too?
Freeing Will
Why a brain, despite being governed by deterministic neurochemical processes at lower levels, can exhibit free will at the highest level is not clear. Is it possible to say, human will might not be a priori free inside human brains, but it has the potential to freeing itself via conscious acts, moral or rational decision that transcend its intrinsic automatisms? Is that a kind of neurological imperative?
These questions blur the lines between determinism and free will. In some criminal cases, antisocial behavior is a result of brain damage or cancer. How do these instances differ from cases where antisocial tendencies develop due to prolonged use of drugs and alcohol? Our concept of Offenders seems to need intent and therefore at least some amount of consciousness.
Inextricably entangled, the hard problem of consciousness and the hard problem of cosmology pose questions about the consciousness readiness i.e. observability factor of Sets of Universes.
Existential Superpositions
Although intuition may suggest that a universe and matter exist even without perception, this idea is not without debate. Our intuitive understanding of existence appears to falter at the extremities. Berkeley’s dictum “Esse est percipi” (to be is to be perceived) hints at a superposition of existence and non-existence, with observers collapsing objects into existence through perception. Our Universe would then have been in such a mode until Observers arrived.
That means, our natural Universe was indistinguishable from rational Universes until we labeled it as “natural.” If somehow Einstein-Rosen Bridges lead into rational universes, observers that would be able to cross into them could “naturalize” them, by filtering the natural params out of the imaginary chromatic parameter spectrum we mentioned above. Since Natural Universes are a subset of rational universes, we could even speculate if our universe was impregnated by observers from another parallel universe. They could Naturalize Rational Universes similar to Interstellar Humans could terraform unhospitable Planets like Mars.
Freak observers
The connection between the Boltzmann Brain scenario and the Simulation Argument can be considered as follows: If we accept the possibility of Boltzmann Brains spontaneously forming in the universe, then we must confront the possibility that our own experiences are just as likely to be those of a Boltzmann Brain as those of a real human being in a “base” reality. This is similar to the Simulation Argument, where we might just as well be simulated consciousnesses in a computer program as real human beings in a physical universe.
The Boltzmann Brain scenario and the Simulation Argument also share the implication that our memories and perceptions of an ordered universe could be illusions. In the Boltzmann Brain scenario, a spontaneously formed brain could have false memories of a past that never happened. Similarly, in a simulated reality, our experiences and memories could be programmed into us, with no true past events to reference.
The concept of a solitary universe, or Soloverse, and a solitary reality, or Soloreality, appears incredibly improbable in a cosmos where singularity is virtually nonexistent. A simple glance at the numerous elements, objects, and entities that fill our universe reveals a fundamental truth – there is virtually no element or entity in our universe that is singularly unique, meaning that it bears no comparison or relation to anything else.
Indeed, our universe thrives on diversity, complexity, and interrelation. The multitude of celestial bodies, the variety of life forms, the richness of elements – all of these serve as testament to the fact that in our universe, nothing exists in isolation. Everything is part of a vast network of connections, constantly interacting and influencing one another.
With this in mind, it’s hard to imagine that this pattern doesn’t apply at the grandest level of existence. If no object or entity within our universe is unique and stands alone, why should the universe itself be any different? After all, wouldn’t it contradict the universal principle we’ve observed so far?
Thus, given what we understand about our universe and its intricate interconnectedness, the notion of a Soloverse and a Soloreality seems to be a stark outlier. It begs the question – if everything in the universe adheres to a pattern of interconnectedness and relatability, why should the universe itself be the exception?
Why should our universe and our universal reality be special, given the circumstances?